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ABSTRACT

We use techniques from nonparametric function estimation theory to extract the density profiles, and their deriva-
tives, from a set of N-body dark matter halos. We consider halos generated from �CDM simulations of gravitational
clustering, as well as isolated spherical collapses. The logarithmic density slopes � � d log �/d log r of the �CDM
halos are found to vary as power laws in radius, reaching values of � � �1 at the innermost resolved radii,�10�2rvir .
This behavior is significantly different from that of broken-power-law models like the Navarro-Frenk-White (NFW)
profile but similar to that of models like de Vaucouleurs’s. Accordingly, we compare theN-body density profiles with
various parametric models to find which provide the best fit. We consider an NFW-like model with arbitrary inner
slope; Dehnen & McLaughlin’s anisotropic model; Einasto’s model (identical in functional form to Sérsic’s model
but fitted to the space density); and the density model of Prugniel & Simien that was designed to match the depro-
jected form of Sérsic’s R1=n law. Overall, the best-fitting model to the �CDM halos is Einasto’s, although the Prugniel-
Simien and Dehnen-McLaughlin models also perform well. With regard to the spherical-collapse halos, both the
Prugniel-Simien and Einasto models describe the density profiles well, with an rms scatter some 4 times smaller than
that obtained with either the NFW-like model or the three-parameter Dehnen-McLaughlin model. Finally, we confirm
recent claims of a systematic variation in profile shape with halo mass.
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1. INTRODUCTION

A fundamental question is the distribution of matter in bound
systems (galaxies, galaxy clusters, and darkmatter halos) that form
in an expanding universe. Early work on the self-similar collapse
of (spherical) primordial overdensities resulted in virialized struc-
tures having density profiles described by a single power law
(e.g., Fillmore & Goldreich 1984; Bertschinger 1985; Hoffman
1988). Some of the first N-body simulations were simple cold-
collapse calculations like these (e.g., van Albada 1961; Aarseth
1963; Hénon 1964; Peebles 1970). It was quickly realized that
given appropriately low but nonzero levels of initial random ve-
locity, the end state of such systems departed from a simple power
law, resembling instead the de Vaucouleurs (1948) R1=4 profiles
observed in elliptical galaxies (e.g., van Albada 1982; Aguilar
& Merritt 1990). A closer reinspection of the data, however
(e.g., Figs. 4–6 in van Albada 1982; Fig. 4 in Carlberg et al.
1986) reveals obvious and systematic deviations from the R1/4

model in the cold collapses (see also Nipoti et al. 2006). From
a visual inspection of these figures, one can see that the dis-
tributions would be better described with an R1/n profile with
n < 4.

AsN-body techniques improved, the logarithmic profile slopes
of cold dark matter (CDM) halos, simulated in hierarchical merger
models, were also observed to steepen with increasing radius
(e.g., West et al. 1987; Frenk et al. 1988; Efstathiou et al. 1988).
Dubinski &Carlberg (1991) adopted Hernquist’s (1990) double-
power-law model (itself a modification of Jaffe’s [1983] model )
to describe these density profiles. This empirical model has an
inner logarithmic slope of �1 and an outer logarithmic slope of
�4. It was introduced as an analytical approximation to the de-
projected form of de Vaucouleurs’ (1948) profile. Navarro et al.
(1995) modified this to give the so-called Navarro-Frenk-White
(NFW) model, which has an outer logarithmic slope of �3 ra-
ther than�4,whileMoore et al. (1998, 1999) suggested that a fur-
ther variation having an inner logarithmic slope of �1.4 or �1.5
might be more appropriate.

The density profiles of N-body halos typically span only �2
decades in radius, between the virial radius and an inner limit set
by the N-body resolution. It has long been clear that other func-
tional forms might fit such limited data as well or better than the
NFW or Moore profiles. Recently, Navarro et al. (2004) argued
for a model, like de Vaucouleurs’s in which the logarithmic slope
varies continuously with radius:

d ln �

d ln r
¼ �2

r
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i.e.,

�(r) / exp �Ar�ð Þ; ð2Þ

where r�2 is the radius at which the logarithmic slope of the den-
sity is�2 and� is a parameter describing the degree of curvature
of the profile. Merritt et al. (2005) pointed out that this is the
same relation between slope and radius that defines Sérsic’s (1963,
1968) model, with the difference that Sérsic’s model is tradition-
ally applied to the projected (surface) densities of galaxies, not to
the space density. Merritt et al. further showed that the (space)
density profiles of a sample ofN-body halos were equally well fit-
ted by equation (2) or by a deprojected Sérsic profile, and that both
of thesemodels provide better fits than anNFW-like, double-power-
law model with a variable inner slope. Hence, Sérsic’s model—
the function that is so successful at describing the luminosity pro-
files of early-type galaxies and bulges (e.g., Caon et al. 1993;
Graham&Guzmán 2003; and references therein) and the projected
density of hot gas in galaxy clusters (Demarco et al. 2003)—is also
an excellent description of N-body halos.

(To limit confusion, we henceforth refer to eq. [2] as ‘‘Einasto’s
r1

=n model’’ when applied to space density profiles and as ‘‘Sérsic’s
R1=n model’’ when applied to projected density profiles, with R
the radius on the plane of the sky. The former name acknowl-
edges Einasto’s [1965, 1968, 1969] early and extensive use of
eq. [2] to model the light and mass distributions of galaxies [see
also Einasto & Haud 1989]. In addition, we henceforth replace
the exponent � by 1/n in keeping with the usage established by
Sérsic and de Vaucouleurs.)

In this paper we continue the analysis of alternatives to theNFW
andMoore profiles, using a new set of N-body halos. Among the
various models that we consider is the Prugniel-Simien (Prugniel
& Simien 1997) law, first developed as an analytic approximation
to the deprojected form of the Sérsic R1=n profile. Apart from the
work of Lima Neto et al. (1999), Pignatelli & Galletta (1999),
and Márquez et al. (2000, 2001), the Prugniel-Simien model has
received little attention to date. Demarco et al. (2003) have, how-
ever, applied it to the gas density profiles of 24 galaxy clusters
observed with ROSAT, and Terzić & Graham (2005) showed that
it provides a superior description of the density profiles of real
elliptical galaxies compared with either the Jaffe or Hernquist mod-
els. As far as we are aware, ours is the first application of the
Prugniel-Simien model to N-body halos.

As in Merritt et al. (2005), we base our model evaluations on
nonparametric representations of theN-body density profiles. Such
representations are ‘‘optimum’’ in terms of their bias-variance
tradeoff but are also notable for their flexibility. Not only do they
(1) constitute ‘‘stand-alone,’’ smooth, and continuous represen-
tations of the density and its slope, they are also well suited to
(2) inferring best-fit values for the fitting parameters of parametric
functions and (3) comparing the goodness of fit of different pa-
rametric models via the relative values of the integrated square
error or a similar statistic. The more standard technique of com-
puting binned densities is suitable (although inferior) for (2) and
(3) but not for (1), since the density is given only at a discrete set
of points and the derivatives are poorly defined, while techniques
like Sarazin’s (1980) maximum likelihood algorithm provide a
(perhaps) more direct route to (2) but are not appropriate for
(1) or (3). Recently, nonparametric function estimation methods
have been applied to many other problems in astrophysics, in-
cluding reconstruction of the cosmicmicrowave background fluc-
tuation spectrum (Miller et al. 2002), dynamics of dwarf galaxies
(Wang et al. 2005), and reconstruction of darkmatter distributions
via gravitational lensing (Abdelsalam et al. 1998). Application of

nonparametric methods to the halo density profile problem is per-
haps overdue, especially given the importance of determining the
inner density slope (Diemand et al. 2005).
In x 2 we introduce the data sets to be analyzed. These consist

of N-body simulations of 10�CDM halos and two halos formed
by monolithic (nearly spherical ) collapse. (Moore et al. [1999]
have discussed the similarity between the end state of cold-collapse
simulations and hierarchical CDMmodels.) In x 3 we present the
nonparametric method used to construct the density profiles and
their logarithmic slopes. Section 4 presents four different three-
parameter models, and x 5 reports howwell these empirical mod-
els perform. Our findings are summarized in x 7.
In Paper II of this series (Graham et al. 2006a) we explore the

Einasto and Prugniel-Simien models in more detail. Specifically,
we explore the logarithmic slope of these models and compare
the results with observations of real galaxies. We also present the
models’ circular velocity profiles and their �/�3 profiles. Helpful
expressions for the concentration and assorted scale radii (rs, r�2,
re, Re, rvir , and rmax, the radius where the circular velocity profile
has its maximum value) are also derived. Because the Prugniel-
Simien model yields the same parameters as those coming from
Sérsic-model fits, we are able to show in Paper III (Graham et al.
2006b) the location of our dark matter halos on the Kormendy
diagram (�e vs. log Re), along with real galaxies. In addition, we
show in Paper III the location of our dark matter halos and real
galaxies and clusters in a new log (�e) log (Re) diagram.

2. DATA: DARK MATTER HALOS

We use a sample of relaxed, dark matter halos from Diemand
et al. (2004a, 2004b). Details about the simulations, convergence
tests, and an estimate of the converged scales can be found in
those papers. Briefly, the sample consists of six cluster-sized
halos (models A09, B09, C09, D12, E09, and F09) resolved with
5–25 million particles within the virial radius, and four galaxy-
sized halos (models G00, G01, G02, and G03) resolved with 2–
4 million particles. The innermost resolved radii are 0.3%–0.8%
of the virial radius, rvir. The outermost data point is roughly at the
virial radius, which is defined in such a way that the mean den-
sity within rvir is 178�

0:45
M �crit ¼ 98:4�crit (Eke et al. 1996) using

�m ¼ 0:268 (Spergel et al. 2003). The virial radius thus encloses
an overdensity that is 368 times denser than the meanmatter den-
sity. We adopted the same estimates of the halo centers as in the
Diemand et al. papers; these were computed using SKID (Stadel
2001), a kernel-based routine.
In an effort to study the similarities between cold, collisionless

collapse halos and CDM halos, we performed two additional
simulations. We distributed 107 particles with an initial density
profile �(r) / r�1, within a unit radius sphere with total mass
1 (M11) and 0.1 (M35). The particles were given zero kinetic
energy, and the gravitational softening was set to 0.001. Each
system collapsed and experienced a radial-orbit instability (Merritt
& Aguilar 1985) that resulted in a virialized, triaxial/prolate struc-
ture. The lower mass halo, M35, collapsed less violently over a
longer period of time.

3. NONPARAMETRIC ESTIMATION OF DENSITY
PROFILES AND THEIR DERIVATIVES

Density profiles of N-body halos are commonly constructed
by counting particles in bins. While a binned histogram is a bona
fide nonparametric estimate of the ‘‘true’’ density profile, it has
many undesirable properties; e.g., it is discontinuous, and it de-
pends sensitively on the chosen size and location of the bins (see,
e.g., Stepanas & Saha 1995). A better approach is to view the
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particle positions as a random sample drawn from some unknown,
smooth density �(r), and to use techniques from nonparametric
function estimation to construct an estimate �̂ of � (e.g., Scott
1992). In the limit that the ‘‘sample size’’N tends to infinity, such
an estimate exactly reproduces the density function from which
the data were drawn, as well as many properties of that function,
e.g., its derivatives (Silverman 1986).

We used a kernel-based algorithm for estimating �(r), similar
to the algorithms described in Merritt & Tremblay (1994) and
Merritt (1996). The starting point is an estimate of the three-
dimensional density obtained by replacing each particle at posi-
tion ri by a kernel of width hi, and summing the kernel densities:

�̂ rð Þ ¼
XN
i¼1

mi

h3i
K

1

hi
r� rij j

� �
: ð3Þ

Heremi is the mass associated with the ith particle andK is a nor-
malized kernel function, i.e., a density function with unit volume.
We adopted the Gaussian kernel,

K( y) ¼ 1

(2�)3=2
e�y 2=2: ð4Þ

The density estimate of equation (3) has no imposed symme-
tries. We now suppose that �(r) ¼ �(r), i.e., that the underlying
density is spherically symmetric about the origin. In order for the
density estimate to have this property, we assume that each par-
ticle is smeared uniformly around the surface of the sphere whose
radius is ri. The spherically symmetrized density estimate is

�̂(r) ¼
XN
i¼1

mi

h3i

1

4�

Z
d�

Z
d� sin �K

d

hi

� �
; ð5aÞ

d2 ¼ r� rij j2 ð5bÞ
¼ r 2i þ r 2 � 2rri cos �; ð5cÞ

where � is defined (arbitrarily) from the ri-axis. This can be ex-
pressed in terms of the angle-averaged kernel K̃,

K̃ r; ri; hið Þ � 1

4�

Z �=2

��=2

d�

;

Z 2�

0

d� sin �K h�1
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2i þ r 2 � 2rri cos �

q� �
ð6aÞ

¼ 1

2

Z 1

�1

d�K h�1
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2i þ r 2 � 2rri�

q� �
; ð6bÞ

as

�̂(r) ¼
XN
i¼1

mi

h3i
K̃ r; ri; hið Þ: ð7Þ

Substituting for the Gaussian kernel, we find

K̃ r; ri; hið Þ ¼ 1

(2�)3=2
rri

h2i

� ��1

exp � r 2i þ r 2

2h2i

� �
sinh

rri

h2i

� �
:

ð8Þ

A computationally preferable form is

K̃ ¼ 1

2(2�)3=2
rri

h2i

� ��1

exp � (ri � r)2

2h2i

� �
� exp � (ri þ r)2

2h2i

� �� �
:

ð9Þ

Equations (7) and (9) define the density estimate. Typically, one
sets up a grid in radius and evaluates �̂(r) discretely on the grid.
However, we stress that the density estimate itself is a continuous
function and is defined independently of any grid.

Given a sample of N positions and particle masses drawn ran-
domly from some (unknown) �(r), the goal is to construct an es-
timate �̂(r) that is as close as possible, in some sense, to �(r).
In the scheme just described, one has the freedom to adjust the N
kernel widths hi in order to achieve this. In general, if the hi are
too small, the density estimate will be ‘‘noisy,’’ i.e., �̂(r) will ex-
hibit a large variancewith respect to the true density, while if the
hi are too large, the density estimate will be oversmoothed, i.e.,
there will be a large bias. (Of course the same is true for binned
histograms, although in general the bias-variance tradeoff for his-
tograms is less good than for kernel estimates.) If the true �(r)
were known a priori, one could adjust the hi so as to minimize
(for instance) the mean square deviation between �(r) and �̂(r).
Since �(r) is not known a priori for our halos, some algorithm
must be adopted for choosing the hi . We followed the standard
practice (e.g., Silverman1986, p. 101) of varying the hi as a power
of the local density:

hi ¼ h0 �̂pilot rið Þ=g
� 	��

; ð10Þ

where �̂pilot(r) is a ‘‘pilot’’ estimate of �(r), and g is the geometric
mean of the pilot densities. Since the pilot estimate is used only
for assigning the hi, it need not be differentiable, and we con-
structed it using a nearest-neighbor scheme.

The final density estimate �̂(r) is then a function of two quan-
tities: h0 and �. Figure 1 illustrates the dependence of �̂(r) on
h0 when the kernel algorithm is applied to a random sample of
106 equal-mass particles generated from an Einasto density pro-
filewith n ¼ 5, corresponding to typical values observed inMerritt
et al. (2005). Each of the density profile estimates of Figure 1 used
� ¼ 0:3. As expected, for small h0 the estimate of �(r) is noisy
but faithful in an average way to the true profile, while for large
h0 �(r) is a smooth function but is biased at small radii due to the
averaging effect of the kernel. For� ¼ 0:3 the ‘‘optimum’’ h0 for
this sample is �0.05re , where re is the half-mass radius coming
from the Einasto model (see x 4.2).

In what follows we compare the nonparametric estimates �̂(r)
derived from the N-body models with various parametric fitting
functions in order to find the best-fitting parameters of the latter
by minimizing the rms residuals between the two profiles. For
this purpose, any of the density estimates in Figure 1 would yield
similar results, excepting perhaps the density estimate in the top
panel, which is clearly biased at small radii. In addition, we also
wish to characterize the rms value of the deviation between the
‘‘true’’ profile and the best-fitting parametric models. Here it is
useful for the kernel widths to be chosen such that the residuals
are dominated by the systematic differences between the paramet-
ric and nonparametric profiles, and not by noise in �̂(r) resulting
from overly small kernels. We verified that this condition was
easily satisfied for all of the N-body models analyzed here: there
was always found to be a wide range of (h0, �) values such that
the residuals between �̂(r) and the parametric functionwere nearly
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constant. This is a consequence of the large particle numbers
(>106) in the N-body models, which imply a low variance even
for small h0.

As discussed above, quantities like the derivative of the
density can also be computed directly from �̂(r). Figure 2 shows
nonparametric estimates of the slope, dlog �̂/dlog r, for the
same 106 particle data set as in Figure 1. We computed deriva-
tives simply by numerically differentiating �̂(r); alternatively,
we could have differentiated equation (9). Figure 2 shows that as
h0 is increased, the variance in the estimated slope drops, and for
h0 � 0:2re the estimate is very close to the true function.We note
that the optimal choice of h0 when estimating derivatives is larger
than when estimating �(r) (�0.2re vs. �0.05re); this is a well-
known consequence of the increase in ‘‘noise’’ associated with
differentiation. Figure 2 also illustrates the important point that
there is no need to impose an additional level of smoothing when
computing the density derivatives (as was done, e.g., in Reed et al.
2005); it is sufficient to increase h0.

3.1. Application to the N-Body Halos

Figure 3 shows, using � ¼ 0:3 and h0 ¼ 0:05re (left) and � ¼
0:4 and h0 ¼ 0:05re (right),

2 the nonparametric estimates of �(r)
(left) and �(r) � dlog �/dlog r (right) for the 10 N-body halos.
Figure 4 shows the same quantities for the two data sets gener-

ated from cold collapses. We stress that these plots—especially
the derivative plots—could not have been made from tables of
binned particle numbers. For most profiles the slope is a rather
continuous function of radius and does not appear to reach any
obvious, asymptotic, central value by�0.01rvir. Instead, �̂(r) varies
approximately as a power of r ; i.e., log �̂ versus log r is approx-
imately a straight line. Accordingly, we have fitted straight lines,
via a least-squares minimization, to the logarithmic profile slopes
in the right panels of Figures 3 and 4. The regression coefficients,
i.e., slopes, are inset in each panel. (These slope estimates should
be seen as indicative only; they are superseded by the model fits
discussed below.) In passing we note that such a power-law de-
pendence of � on r is characteristic of the Einasto model, with the
logarithmic slope equal to the exponent 1/n. Noise and probable
(small) deviations from a perfect Einasto r1

=n model are expected
to produce slightly different exponents when we fit the density
profiles in the following section with Einasto’s r1

=n model and a
number of other empirical functions.
The slope at the innermost resolved radius is always close to

�1, which is also the slope at r ¼ 0 in the NFW model. How-
ever, there is no indication in Figure 3 that �̂(r) is flattening at
small radii; i.e., it is natural to conclude that N-body simulations
of higher resolution would exhibit smaller inner slopes. On aver-
age, the slope at rvir is around�3, but there are large fluctuations,
and some halos reach a value of�4, as previously noted inDiemand
et al. (2004b). The reason for these fluctuations may be because
the outer parts are dynamically very young (i.e., measured in local
dynamical times), and they have only partially completed their

2 We have intentionally used a small value of h0 to avoid any possibility of
biasing the slope estimates.

Fig. 1.—Nonparametric bias-variance tradeoff in the estimation of �(r) using
a single sample of 106 radii generated from a halo having an Einasto r1=n density
profile with n ¼ 5 (see x 4.2). From top to bottom, h0 ¼ (0:1; 0:03; 0:01; 0:003;
0:001)re; all estimates use � ¼ 0:3 (see eqs. [7], [9], and [10]).

Fig. 2.—Five estimates of the logarithmic slope of an Einasto r1
=n halo,

derived via differentiation of �̂(r). The same sample of 106 radii was used as in
Fig. 1. From top to bottom, h0 ¼ (0:3; 0:2; 0:1; 0:05; 0:03)re; all estimates use
� ¼ 0:4 (see eq. [10]). Dashed lines show the true slope.
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evolution to an equilibrium configuration. We are not able to say
with any confidence what the slopes do beyond rvir.

4. EMPIRICAL MODELS

In this section we present four parametric density models, each
having three independent parameters: two ‘‘scaling’’ parameters

and one ‘‘shape’’ parameter.Wemeasured the quality of each pa-
rametric model’s fit to the nonparametric �̂(r) values using a stan-
dard metric, the integrated square deviation,Z

d log rð Þ log�̂(r)� log �param(r)
� 	2

; ð11Þ

Fig. 3.—Nonparametric estimates of the density �(r) (left) and the slope d log �/d log r (right) for the 10N-body halos of Table 1. The virial radius rvir is marked with
an arrow. Dashed lines in the right panels are linear fits of log (�d log �/d log r) to log r; regression coefficients are also given.
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where �param is understood to depend on the various fitting pa-
rameters, as well as on r. Equation (11) is identical in form to the
Cramér–von Mises statistic (e.g., Cox & Hinkley 1974, eq. [6]),
an alternative to the Kolmogorov-Smirnov statistic for compar-
ing two (cumulative) distribution functions.

We chose to evaluate this integral by discrete summation on
a grid spaced uniformly in log r; our measure of goodness of fit
(which was also the quantity that was minimized in determining
the best-fit parameters) was

�2 �
Pm

j¼1 	
2
j

m� 3
; ð12aÞ

	j ¼ log
�̂ rj

 �

�param rj

 �

" #
; ð12bÞ

with m ¼ 300. With such a large value of m the results obtained
by minimizing equations (12a) and (11) are indistinguishable.
We note that the quantity �2 in equation (12a) is reminiscent of
the standard 
2, but the resemblance is superficial. For instance,
�2 as defined here is independent of m in the large-m limit (and
our choice of m ¼ 300 puts us effectively in this limit). Further-
more, there is no binning involved in the computation of �2; the
grid is simply a numerical device used in the computation of
equation (11).

4.1. Double-Power-Law Models

Hernquist (1990, his eq. [43]) presented a five-parameter gen-
eralization of Jaffe’s (1983) double-power-lawmodel. Sometimes
referred to as the (�, �, �) model, it can be written as

�(r) ¼ �s2
(���)=� r

rs

� ���

1þ r

rs

� ��� �(��� )=�

; ð13Þ

where �s is the density at the scale radius rs, which marks the
center of the transition region between the inner and outer power
laws having slopes of�� and��, respectively. The parameter �
controls the sharpness of the transition (see Zhao 1996; Kravtsov
et al. 1998; and eqs. [37] and [40b] in Dehnen & McLaughlin
2005). Setting (�; �; �) ¼ (1; 3; 1) yields the NFWmodel, while
(1.5, 3, 1.5) gives the model in Moore et al. (1999). Other com-
binations have been used: for example, (1, 3, 1.5) was applied
in Jing & Suto (2000), and (1, 2.5, 1) was used by Rasia et al.
(2004).

In fitting dark matter halos, Klypin et al. (2001, their Fig. 8)
have noted a certain degree of degeneracy when all five param-
eters are allowed to vary. Graham et al. (2003, their Figs. 3 and 4)
have also observed the parameters of this empirical model to be
highly unstable when applied to ( light) profiles having a contin-
uously changing logarithmic slope. Under such circumstances,
the parameters can be a strong function of the fitted radial extent
rather than reflecting the intrinsic physical properties of the pro-
file under study. This was found to be the case for the dark matter
halos under study here. We have therefore chosen to constrain
two of the model parameters, holding � fixed at 1 and � fixed
at 3.
In recent years, as the resolution in N-body simulations has

improved, Moore and collaborators have found that the inner-
most (resolved ) logarithmic slope of dark matter halos has a
range of values that are typically shallower than �1.5, recently
obtaining a mean value (plus or minus a standard deviation) equal
to�1:26 � 0:17 at 1% of the virial radius (Diemand et al. 2004b).
At the same time, Navarro et al. (2004) report that the NFW
model underestimates the density over the inner regions of most
of their halos, which have innermost resolved slopes ranging from
�1.6 to �0.95 (their Fig. 3). A model with an outer slope of �3
and an inner slope of �� might therefore be more appropriate.
Such a model has been used before and can be written as

�(r) ¼ 23���s

(r=rs)
�(1þ r=rs)

3��
: ð14Þ

The total mass of this model is infinite, however.
We have applied the above (1, 3, �) model to our dark matter

density profiles, the results of which are shown in Figure 5 for
the N-body halos, and in the top panel of Figure 6 for the cold-
collapse models. The rms scatter� is inset in each figure and ad-
ditionally reported in Table 1.

4.1.1. Two-Parameter Models

Recognizing that galaxies appear to have flat inner density
profiles (e.g., Flores & Primack 1994; Moore 1994), Burkert
(1995) cleverly introduced a density model having an inner slope
of zero and an outer profile that decayed as r�3. His model is
given by the expression

�(r) ¼ �0r
3
s

(r þ rs)(r 2 þ r 2s )
; ð15Þ

Fig. 4.—Nonparametric estimates of �(r) (left) and d log �/d log r (right) for the two ‘‘collapse’’ models. Dashed lines in the right panels are linear fits of
log (�d log �/d log r) to log r.
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where �0 is the central density and rs is a scale radius. Appli-
cation of this model in Figure 7 reveals that, with only two free
parameters, it does not provide as good a fit to the simulated dark
matter halos as the (1, 3, �) model presented above. The hump-
shaped residual profiles in Figure 7 signify the model’s inability
to match the curvature of our density profiles. ( It is important to
point out that Burkert’s model was introduced to fit the observed
rotation curves in low surface brightness galaxies after the contri-
bution from the baryonic component had been subtracted out, a
task that it performs well.) This and other two-parameter models
are shown in Table 2.

As noted previously, the NFW (�; �; �) ¼ (1; 3; 1) model also
has only two parameters: �s and rs. Because this model is still
often used, we apply it to our halos in Figure 8. Comparison with
Figure 5 reveals that the NFW model never performs as well as
the (1, 3, �) model; the residuals are�50% larger and sometimes
twice as large. Importantly, the large-scale curvature observed
in many of the NFW residual profiles (Fig. 8) reveals that this
model does not describe the majority of the halos, and that the
(1, 3, �) model should be preferred over the NFW model.

An alternative two-parameter expression has recently been stud-
ied by Dehnen & McLaughlin (2005, their eq. [20b]; see also
Austin et al. 2005). It is a special case of a more general family
of models, which we test next, when the velocity ellipsoid at the
halo center is isotropic and �/�3

r is a (special ) power law in ra-
dius, varying as r�35=18. This two-parameter density model is an
(�; �; �) ¼ (4/9; 31/9; 7/9) model given by

�(r) ¼ 26�s

(r=rs)
7=9 1þ r=rsð Þ4=9

h i6 ; ð16Þ

and is applied in Figure 9. It clearly provides amuch better match
to the dark matter halo density profiles in comparison with the
previous two-parameter model over the fitted radial range, but
the rms scatter reveals that it does not perform as well as the (1,
3, �) model, nor can it describe the ‘‘spherical collapse’’ halos
(Fig. 6). Therefore, in x 4.1.2 we test the more general three-
parameter model given in Dehnen & McLaughlin (2005).

4.1.2. Dehnen-McLaughlin Anisotropic Three-Parameter Model

Dehnen & McLaughlin (2005, their eq. [46b]) present a the-
oretically motivated, three-parameter model such that

½�; �; �� ¼ ½2(2� �0)=9; (31� 2�0)=9; (7þ 10�0)=9�;

and the term �0 reflects the central (r ¼ 0) anisotropy: a measure
of the tangential to radial velocity dispersion.3 Setting � 0 ¼ (7þ
10�0)/9, we have ½�; �; �� ¼ ½(3� � 0)/5; (18� � 0)/5; � 0�, and
their density model can be written as

�(r) ¼ 26�s

r=rsð Þ� 0
1þ r=rsð Þ 3�� 0ð Þ=5
h i6 ; ð17Þ

As shown in Figure 10, for three of the six cluster-sized halos
this model has the greatest residual scatter of the four different
three-parameter models tested here. For another two of the six
cluster-sized halos it has the second greatest residual scatter. This
model is also unable tomatch the curvature in the halos of the cold-
collapse models (Fig. 10). However, it does provide very good fits
to the galaxy-sized halos, and actually has the smallest residual
scatter for three of these halos (Table 3).

The shallowest, inner, negative logarithmic slope of this model
occurs when �0 ¼ 0, giving a value of 7/9 � 0:78. For nonzero
values of �0 this slope steepens roughly linearly with �0.

4.2. Sérsic/Einasto Model

Sérsic (1963, 1968) generalized de Vaucouleurs’s (1948) R1=4

luminosity profile model by replacing the exponent 1/4 with 1/n,
such that n was a free parameter that measured the ‘‘shape’’ of a
galaxy’s luminosity profile. Using the observers’ notion of ‘‘con-
centration’’ (see the review in Graham et al. 2001), the quantity n
is monotonically related to how centrally concentrated a galaxy’s
light profile is. With R denoting the projected radius, Sérsic’s R1=n

model is often written as

I(R) ¼ Ie exp �bn (R=Re)
1=n � 1

h in o
; ð18Þ

where Ie is the (projected) intensity at the (projected) effective
radius Re. The term bn is not a parameter but a function of n and
defined in such a way thatRe encloses half of the (projected) total
galaxy light (Caon et al. 1993; see also Ciotti 1991, his eq. [1]). A
good approximation when nk 0:5 is given in Prugniel & Simien
(1997) as

bn � 2n� 1=3þ 0:009876=n: ð19Þ

Assorted expressions related to the R1=n model can be found in
Graham & Driver’s (2005) review article.

Despite the success of this model in describing the luminosity
profiles of elliptical galaxies (e.g., Davies et al. 1988; Caon et al.
1993; D’Onofrio et al. 1994; Young & Currie 1995; Graham
et al. 1996; Graham & Guzmán 2003; and references therein), it
is nonetheless an empirical fitting function with no commonly
recognized physical basis (but seeBinney et al. 1982;Merritt et al.
1989; Ciotti 1991; Márquez et al. 2001). We are therefore free to
explore the suitability of this function for describing the mass

3 The quantities � and �0 are not as related as their notation suggests. The
former is the outermost, negative logarithmic slope of the density profile, while
the latter is the velocity anisotropy parameter at r ¼ 0.

Fig. 5.—Residual profiles from application of the three-parameter (1, 3, �)
model (eq. [14]) to our 10 N-body density profiles. The virial radius is marked
with an arrow, and the rms residual (eq. [12a]) is inset with the residual profiles.
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density profiles, �(r), of dark matter halos. Indeed, Einasto (1965,
eq. [4]; 1968, eq. [1.7]; 1969, eq. [3.1]) independently developed
the functional form of Sérsic’s equation and used it to describe
density profiles.More recent application of this profile to themod-
eling of density profiles can be found in Einasto & Haud (1989,

their eq. [14]) and Tenjes et al. (1994, their eq. [A1]). Most re-
cently, the same model has been applied by Navarro et al. (2004)
and Merritt et al. (2005) to characterize dark matter halos, and
Aceves et al. (2006) used it to describe merger remnants in simu-
lated disk galaxy collisions.

Fig. 6.—Residual profiles from the application of seven different parametric models (see x 4) to our cold-collapse density halos, M11 and M35. In the bottom panel,
the solid curve corresponds to the two-parameter model fromDehnen &McLaughlin (2005), and the dashed curve corresponds to their three-parameter model. The rms
residual (eq. [12a]) is inset in each figure.
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To avoid potential confusion with Sérsic’s R1=n model, we
define the following expression as Einasto’s r1

=n model:

�(r) ¼ �e exp �dn (r=re)
1=n � 1

h in o
; ð20Þ

where r is the spatial (i.e., not projected) radius. The term dn,
defined below, is a function of n such that �e is the density at the
radius re that defines a volume containing half of the total mass.
The central density is finite and given by �(r ¼ 0) ¼ �ee

dn.

The integral of equation (20) over some volume gives the en-
closed mass, which is also finite and equal to

M (r) ¼ 4�

Z r

0

�(r̄)r̄ 2 dr̄: ð21Þ

This can be solved by using the substitution x̄ � dn(r̄ /re)
1=n to

give

M (r) ¼ 4�nr 3e �ee
dnd�3n

n �(3n; x); ð22Þ

where �(3n; x) is the incomplete gamma function defined by

�(3n; x) ¼
Z x

0

e�tt 3n�1 dt: ð23Þ

Replacing �(3n; x) with �(3n) in equation (22) gives the total
mass Mtot.

The value of dn, which we first saw in equation (20), is ob-
tained by solving �(3n) ¼ 2�(3n; dn), where � is the (complete)
gamma function. The value of dn can bewell approximated (G. A.
Mamon 2005, private communication) by the expression

dn � 3n� 1=3þ 0:0079=n; for nk 0:5 ð24Þ

(see Fig. 11).
In Paper II we recast Einasto’s r1

=n model using the radius r�2,
where the logarithmic slope of the density profile equals �2.

Einasto’s r1
=n model (see Einasto & Haud 1989) was used in

Navarro et al. (2004, their eq. [5]) to fit their simulated darkmatter

TABLE 1

Empirical Three-Parameter Models

(1, 3, �) Einasto r1
=n

Prugniel-Simien

Halo ID

(1)

rs
(kpc)

(2)

log �s
(M� pc�3)

(3)

�

(4)

�

(dex)

(5)

re
(kpc)

(6)

log �e
(M� pc�3)

(7)

nEin
(8)

�

(dex)

(9)

Re

(kpc)

(10)

log �0

(M� pc�3)

(11)

nPS
(12)

�

(dex)

(13)

Cluster-sized Halos

A09................... 626.9 �3.87 1.174 0.025 5962 �6.29 6.007 (0.015) 2329 �2.73 3.015 0.021

B09................... 1164 �4.75 1.304 (0.037) 17380 �7.66 7.394 0.041 4730 �3.34 3.473 0.038

C09................... 241.8 �3.27 0.896 0.040 1247 �4.95 3.870 0.030 738.9 �2.55 2.192 (0.016)

D12................... 356.1 �3.82 1.251 0.026 2663 �6.02 5.939 0.020 1232 �2.52 3.147 (0.019)

E09 ................... 382.5 �3.96 1.265 0.033 2611 �6.06 5.801 0.032 1231 �2.62 3.096 (0.030)

F09 ................... 233.9 �3.51 1.012 0.030 1235 �5.26 4.280 0.025 697.3 �2.63 2.400 (0.017)

Galaxy-sized Halos

G00................... 27.96 �3.16 1.163 (0.020) 189.0 �5.22 5.284 0.023 114.4 �42.02 3.135 0.028

G01................... 35.34 �3.36 1.275 0.029 252.6 �5.51 5.873 (0.028) 146.0 �2.01 3.425 0.032

G02................... 53.82 �3.59 1.229 0.034 391.4 �5.74 5.725 (0.031) 214.9 �2.34 3.243 0.036

G03................... 54.11 �3.70 1.593 0.028 405.6 �5.98 7.791 (0.023) 229.1 �1.47 4.551 0.024

Spherical-Collapse Halos

M11 .................. 0.0175 2.66 0.006 0.223 0.244 0.27 3.426 (0.043) 0.187 2.57 2.445 0.051

M35.................. 0.0180 1.62 0.030 0.249 0.240 �0.70 3.214 (0.059) 0.185 1.47 2.301 0.061

Notes.—Col. (1): Object identification. Cols. (2)–(5): (1, 3, �) model (eqs. [13] and [14]) scale radius rs, scale density �s, inner profile slope �, and rms scatter of the
fit. Cols. (6)–(9): Einasto r1

=n model half-mass radius re, associated density �e, profile shape nEin, and rms scatter of the fit. Cols. (10)–(13): Prugniel-Simien model scale
radius Re, scale density �

0 (the spatial density �e at r ¼ Re is such that �e ¼ �0e�b), profile shape nPS, and rms scatter of the fit. Note that the radius and density units do
not apply to M11 and M35. For each halo, of the three models shown here, the model having the lowest residual scatter is placed in parentheses.

Fig. 7.—Residual profiles from application of Burkert’s two-parameter
model (eq. [15]) to our dark matter density profiles.
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halos. They obtained n � 1/(0:172 � 0:032) � 6 � 1:1. Sub-
sequently, Merritt et al. (2005) showed that Einasto’s r1

=n model
performed as well as the (1, 3, �) model and gave better fits for
the dwarf galaxy– and galaxy-sized halos, obtaining n � 5:6�
0:7. For a sample of galaxy-sized halos, Prada et al. (2006) ob-
tained similar values of 6–7.5.

Figure 12 shows the application of equation (20) to the
N-body halos of x 3. A comparisonwith the (1, 3, �) model fits in
Figure 5 reveals that Einasto’s model provides a better descrip-

tion for five of the six cluster-sized halos, three of the four galaxy-
sized halos, and both of the spherical-collapse halos.
Navarro et al. (2004) wrote ‘‘adjusting the parameter [n] al-

lows the profile to be tailored to each individual halo, resulting in
improved fits.’’ 4 Such a breaking of structural homology (see

TABLE 2

Two-Parameter Models

Burkert NFW Isotropic Dehnen-McLaughlin (Eq. [16])

Halo ID

(1)

rs
(kpc)

(2)

log �0
(M� pc�3)

(3)

�

(dex)

(4)

rs
(kpc)

(5)

log �s
(M� pc�3)

(6)

�

(dex)

(7)

rs
(kpc)

(8)

log �s
(M� pc�3)

(9)

�

(dex)

(10)

Cluster-sized Halos

A09................................. 114.0 �1.65 0.242 419.8 �3.50 0.042 933.7 �2.43 (0.018)

B09................................. 145.2 �2.23 0.247 527.2 �4.03 0.068 1180.0 �2.97 (0.042)

C09................................. 96.16 �1.74 0.181 284.4 �3.42 (0.042) 554.3 �2.27 0.091

D12................................. 68.39 �1.62 0.230 213.3 �3.34 0.051 409.1 �2.17 (0.026)

E09 ................................. 77.09 �1.80 0.215 227.0 �3.46 0.053 428.2 �2.28 (0.037)

F09 ................................. 80.17 �1.85 0.181 229.0 �3.49 (0.030) 438.2 �2.32 0.066

Galaxy-sized Halos

G00................................. 10.12 �1.56 0.139 22.23 �2.94 (0.024) 34.43 �1.59 0.037

G01................................. 10.28 �1.54 0.152 23.12 �2.95 0.038 36.53 �1.61 (0.031)

G02................................. 14.06 �1.66 0.183 36.39 �3.22 0.044 63.06 �1.96 (0.035)

G03................................. 09.35 �1.32 0.179 19.54 �2.68 0.066 26.98 �1.23 (0.025)

Spherical-Collapse Halos

M11 ................................ 0.0261 3.01 (0.203) 0.0309 2.23 0.233 0.0234 4.31 0.244

M35................................ 0.0265 1.98 (0.231) 0.0314 1.20 0.259 0.0236 3.29 0.269

Notes.—Col. (1): Object identification. Cols. (2)–(4): Burkert (1995) model scale radius rs, central density �0, and rms scatter of the fit (using m� 2 in the
denominator of eq. [12a]). Cols. (5)–(7): NFW (1, 3, 1) model scale radius rs, scale density �0, and rms scatter of the fit (using m� 2). Cols. (8)–(10): Dehnen &
McLaughlin (2005, their eq. [20b]) model scale radius rs, associated density �s, and rms scatter (using m� 2). This model has inner and outer negative logarithmic
slopes of 7/9 � 0:78 and 31/9 � 3:44, respectively. Note that the above radius and density units do not apply to M11 and M35. For each halo, the two-parameter
model with the lowest residual scatter is placed in parentheses.

Fig. 8.—Residual profiles from application of the two-parameter NFW (1, 3, 1)
model to our dark matter density profiles.

Fig. 9.—Residual profiles from application of the two-parameter (4/9, 31/9,
7/9) model (eq. [16]) from Dehnen &McLaughlin (2005, their eq. [20b]) to our
dark matter density profiles.

4 The value of n, equal to 1/� in Navarro et al.’s (2004) notation, ranged
from 4.6 to 8.2 (Navarro et al. 2004, their Table 3).
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Graham & Colless [1997] for an analogy with projected lumi-
nosity profiles) replaces the notion that a universal density pro-
file may exist.

A number of useful expressions pertaining to Einasto’s model,
when used as a density profile (eq. [20]), are given in Cardone
et al. (2005) and Mamon & xokas (2005). In particular, Cardone
et al. provide the gravitational potential, as well as approxima-
tions to the surface density and space velocity dispersion of the
Einasto r1

=n model, while Mamon & xokas give approximations

for the concentration parameter, central density, and Mvir /Mtot,
the virial-to-total mass ratio. The nature of the inner profile slope
of Einasto’s r1

=n model and several other useful quantities are
presented in Paper II.

4.3. Prugniel-Simien Model: A Deprojected Sérsic R1=n Model

Merritt et al. (2005) tested how well a deprojected Sérsic R1=n

model fitted �(r) from the Navarro et al. (2004) N-body halos.
This was essentially the same as comparing the halo surface den-
sities with Sérsic’s R1=n law. Prugniel & Simien (1997) presented
a simple, analytical approximation to the deprojected Sérsic law
(their eq. [ B6]):

�(r) ¼ �0 r

Re

� ��p

exp �b
r

Re

� �1=n" #
; ð25Þ

with

�0 ¼ M

L
Iee

bbn
(1�p) �(2n)

2Re� n 3� pð Þð Þ : ð26Þ

Fig. 10.—Residual profiles fromapplication of the three-parameter ½(3� � 0 )/5;
(18� � 0)/5; � 0� model (eq. [17]) from Dehnen & McLaughlin (2005, their
eq. [46b]) to our dark matter density profiles.

TABLE 3

Theoretically Motivated Anisotropic Dehnen-McLaughlin

Three-Parameter Model

Halo ID

(1)

rs
( kpc)

(2)

log �s
(M� pc�3)

(3)

� 0

(4)

�

(dex)

(5)

Cluster-sized Halos

A09.................... 722.7 �2.21 0.694 (0.013)

B09.................... 1722 �3.30 0.880 0.040

C09.................... 207.0 �1.34 0.241 0.047

D12.................... 322.8 �1.95 0.683 0.022

E09 .................... 330.4 �2.04 0.669 0.034

F09 .................... 193.6 �1.56 0.350 0.036

Galaxy-sized Halos

G00.................... 20.89 �1.11 0.422 (0.017)

G01.................... 25.88 �1.28 0.568 (0.023)

G02.................... 43.05 �1.60 0.581 (0.027)

G03.................... 30.20 �1.34 0.849 0.024

Spherical Collapse Halos

M11 ................... 0.025 4.23 0.00 0.179

M35................... 0.025 3.21 0.00 0.206

Notes.—Col. (1): Object identification. Cols. (2)–(5): Dehnen-McLaughlin
(their eq. [46b]) scale radius rs, scale density �s, inner profile slope �

0, and rms
scatter of the fit. Note that the radius and density units do not apply to M11
and M35. When the rms scatter is lower than the value obtained with the other
three-parameter models, it is placed in parentheses.

Fig. 11.—Difference between the exact value for dn from eq. (20) such that
�(3n) ¼ 2�(3n; dn) and the two approximations inset in the figure.

Fig. 12.—Residual profiles from application of Einasto’s r1
=n model (eq. [20])

to our dark matter density profiles.
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Equation (25) is a generalization of equation (2) in Mellier &
Mathez (1987), who considered only approximations to the de-
projected R1=4 law. Mellier & Mathez’s model was itself a modi-
fication of equation (33) fromYoung (1976), which derived from
the work of Poveda et al. (1960).

In these expressions, Re, n, and b are understood to be essen-
tially the same quantities that appear in the Sérsic R1=n law that
describes the projected density (eq. [18]). In fact, since equa-
tion (25) is not exactly a deprojected Sérsic profile, the correspon-
dence between the parameters will not be perfect. We follow the
practice of earlier authors and define b to have the same relation
to n as in equation (19). (For clarity, we have dropped the sub-
script n from bn.) Although the parameter �0 is obtained from
fitting the density profile, it can be defined in such a way that the
total (finite) mass from equation (25) equals that from equation
(18), giving equation (26). (We stress that the n in the Prugniel-
Simien profile is not equivalent to the n in eq. [20], Einasto’s
model.)

This leaves the parameter p. We define p, like b, uniquely in
terms of n:

p ¼ 1:0� 0:6097=nþ 0:05463=n2: ð27Þ

Lima Neto et al. (1999) derived this expression by requiring
the projection of equation (25) to approximate as closely as pos-
sible the Sérsic profile with the same (Re; n), for 0:6 � n � 10
and 10�2 � R /Re �103.5 The accuracy of Prugniel & Simien’s
(1997) approximation, using equation (27) for p(n), is shown in
Figure 13.

Terzić & Graham (2005) give simple expressions, in terms of
elementary and special functions, for the gravitational potential
and force of a galaxy obeying the Prugniel-Simien law and derive
the spatial and line-of-sight velocity dispersion profiles.

One could also allow p to be a free parameter, creating a den-
sity profile that has any desired inner slope. For instance, setting
p ¼ 0, the Prugniel-Simien model reduces to the Einasto model.
We do not explore that idea further here.

The density at r ¼ Re is given by �e ¼ �0e�b, while the pro-
jected surface density at R ¼ Re, denoted by Ie, can be solved for
using equation (26). Thus, one can immediately construct (a good
approximation to) the projected mass distribution, which will
have a Sérsic form (eq. [18]) with parameters (Re, Ie, and n). This
allows the halo parameters to be directly compared with those of
Sérsic fits to luminous galaxies, which we do in Paper III. In
Paper II we recast this model using the radius where the logarith-
mic slope of the density profile equals �2.
The mass profile (Terzić & Graham 2005, their Appendix A;

see also Lima Neto et al. 1999; Márquez et al. 2001) can be writ-
ten as

M (r) ¼ 4��0R3
enb

n(p�3)� n 3� pð Þ; Zð Þ; ð28Þ

where Z � b(r /Re)
1=n and �(a; x) is the incomplete gamma func-

tion given in equation (23). The total mass is obtained by replac-
ing � n(3� p); Zð Þ with � n(3� p)ð Þ, and the circular velocity is
given by vcirc(r) ¼ GM (r)/r½ �1=2.
In Figure 14 equation (25) has been applied to our dark matter

profiles. The average (plus or minus a standard deviation) of the
shape parameter for the galaxy-sized and cluster-sized halos is
n ¼ 3:59 � 0:65 and n ¼ 2:89 � 0:49, respectively.Merritt et al.
(2005, their Table 1) found values of 3:40 � 0:36 and 2:99�
0:49 for their sample of galaxies and clusters, respectively, in good
agreement with the results obtained here using a different set of
N-body simulations.
Figure 14 reveals that CDM halos resemble galaxies (Merritt

et al. 2005), since the projection of the Prugniel-Simien model
closely matches the Sérsic R1=n model and the latter is a good ap-
proximation to the luminosity profiles of stellar spheroids. Sub-
ject to vertical and horizontal scaling, CDM halos have mass
distributions similar to those of elliptical galaxies with an abso-
lute B-band magnitude around�18 � 1 mag; these galaxies have
n � 3 (see Graham&Guzmán 2003, their Fig. 9). This result was
obscured until recently due to the use of different empirical mod-
els by observers and modelers.
Before moving on, we again remark that we have not explored

potential refinements to expression (27) for the quantity p, but

5 The value of p given in eq. (27) is preferable to the value 1:0� 0:6097/nþ
0:05563/n2 given in Márquez et al. (2000) (G. B. Lima Neto 2005, private
communication).

Fig. 13.—Logarithmic difference between the exact deprojection of Sérsic’s
R1=n model (eq. [18]) and the approximation given by Prugniel & Simien (1997)
in eq. (25), using the values of p and b given in eqs. (27) and (19), respectively.

Fig. 14.—Residual profiles from application of the Prugniel-Simien model
(eq. [25]) to our dark matter density profiles.
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note that this could result in a better matching of the model to the
simulated profiles at small radii. As the resolution of N-body
clustering simulations continues to improve, it will make sense
to explore such generalizations.

5. MODEL COMPARISON: WHICH DID BEST?

Table 4 summarizes howwell each parametric model performed
by listing the rms value of � (eq. [12a]) for each set of halos,
given by

�rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�2
i

vuut ; ð29Þ

with N ¼ 6, 4, and 2 for the cluster-sized, galaxy-sized, and
spherical-collapse halos, respectively. A detailed description of
each model’s performance follows.

The bowl- and hump-shaped residual profiles associated with
the two-parameter model of Burkert (1995) reveal this model’s
inability to describe the radial mass distribution in our simu-
lated dark matter halos. The two-parameter model of Dehnen &
McLaughlin (2005) performs considerably better, although it
too fails to describe the cold-collapse systems and two of the six
cluster-sized halos, specifically, C09 and F09. Although this (4/9,
31/9, 7/9) model never provides the best fit, it does equal or
outperform the NFW-like (1, 3, �) model in describing 3 of the
12 halos (A09, D12, and G03).

In general, all of the three-parameter models perform well
(0:015 dexP�P 0:04 dex) at fitting the N-body (noncollapse)
halos. However, neither the (1, 3, �) model nor the three-parameter
Dehnen-McLaughlin model can match the curvature in the den-
sity profiles of the cold-collapse systems (M11 andM35). On the
other hand, both Einasto’s r1=n model and that from Prugniel &
Simien give reasonably good fits (� � 0:05 dex) for these two
halos.

The Prugniel-Simien model provided the best overall descrip-
tion of the cluster-sized, N-body halos. The (1, 3, �) model and
the three-parameter Dehnen-McLaughlinmodel provided the best
fit for only one cluster-sized, N-body halo each, and even then
the (1, 3, �) model only just outperformed the Prugniel-Simien
model,which gave the best fit for four of the six cluster-sized halos.
For two of these halos, the size of the residual about the optimal

Prugniel-Simien fit was roughly half of the value obtained when
using the (1, 3, �) model.

The implication of this result is that Sérsic’s R1=n model will
describe the projected surface density of the cluster-sized, dark
matter halos. Intriguingly, Demarco et al. (2003) andDurret et al.
(2005) have observed that the (projected) hot X-ray gas distribu-
tion in clusters can indeed be described with Sérsic’s R1=n model,
although the gas can at times display a rather unrelaxed behav-
ior (Statler & Diehl 2005). Studies of gravitational lensing may
therefore benefit from the use of Sérsic’s R1=n model for which
the lensing equation has been solved (Cardone 2004) and for
which numerous other properties have previously been com-
puted (Graham & Driver 2005).

With regard to the galaxy-sized, N-body halos, the situation is
somewhat different. Dehnen&McLaughlin’s (2005) anisotropic
three-parameter model provided the best fit for three of the four
profiles, with the Einasto r1

=n model providing the best fit for the
fourth profile. We also observe that Einasto’s model provided
better fits than the (1, 3, �) model for three of the four N-body
halos. If this observation holds, namely, that the Prugniel-Simien
model describes the density profiles of the cluster-sized halos
best, while Dehnen &McLaughlin’s three-parameter model pro-
vides the best description of the galaxy-sized halos, it would im-
ply that these halos do not have the same structural form. Of
course, even if the same model did provide the best fit for both
types of halo, any variation in the value of the profile shape n, or
central isotropy parameter �0, would point toward the existence
of nonhomology.

While halos of different mass may be systematically better
described by different density laws, it is important to emphasize
that a single density law provides a good fit to all of the N-body
halos considered here. As Table 4 shows, Einasto’s r1

=n law has
the smallest, or second-smallest, value of�rms for galaxy-sized,
cluster-sized, and spherical-collapse halos. None of the other pa-
rametric models that we considered performs as well ‘‘across the
board.’’ The next best performer overall is the Prugniel-Simien
profile.

6. DISCUSSION

Figure 15 shows our N-body halos, together with real elliptical
galaxies and clusters, in the profile shape versus mass plane. The
profile shape parameter plotted there is either n from the Sérsic
R1=n model fit to the light profile, or the corresponding parameter

TABLE 4

Residual Scatter: rms Values of �

Model

(1)

Cluster-sized Halos

(2)

Galaxy-sized Halos

(3)

Spherical-Collapse Halos

(4)

Three-Parameter Models

Einasto............................................................ (0.028) (0.026) (0.052)

Prugniel-Simien.............................................. (0.025) 0.030 (0.056)

(1, 3, �) .......................................................... 0.032 0.028 0.236

Dehnen-McLaughlin (eq. [17])...................... 0.034 (0.023) 0.193

Two-Parameter Models

Dehnen-McLaughlin (eq. [16])...................... 0.053 0.032 0.257

NFW............................................................... 0.046 0.046 0.246

Burkert ........................................................... 0.218 0.164 0.217

Notes.—Col. (1): Model. Col. (2): The rms of the six residual scatters, �rms (eq. [29]), for the cluster-sized halos. Col. (3): Sim-
ilar to col. (2) but for the four galaxy-sized halos. Col. (4): Similar to col. (2) but for the two spherical-collapse halos. For each halo
type, the two models that perform the best are placed in parentheses.
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from the Prugniel-Simien model fit to the dark matter density.
Dynamical masses from the Demarco et al. (2003) study of gal-
axy clusters are shown. We have also included the elliptical gal-
axy compilation in Graham & Guzmán (2003), converting their
B-band luminosities into solar masses using a stellar mass-to-
light ratio of 5.3 (Worthey 1994; for a 12 Gyr old single stellar
population) and an absolute B-band magnitude for the Sun of
5.47 B-mag (Cox 2000). This approach ignores the contribution
from dark matter in galaxies. However, given the uncertainties
on how Mtot /L varies with L (e.g., Trujillo et al. 2004 and refer-
ences therein) we prefer not to apply this correction, and note
that the galaxy masses in Figure 15 only reflect the stellar mass.

Figure 15 suggests that the simulated galaxy-sized halos have
a different shape parameter, i.e., a differentmass distribution, from
the simulated cluster-sized halos. The same conclusionwas reached
byMerritt et al. (2005), who studied a different sample ofN-body
halos. The sample of dwarf galaxy– and galaxy-sized halos from
that paper had a mean (plus or minus a standard deviation)6

profile shape n ¼ 3:04 � 0:34, while the cluster-sized halos had
n ¼ 2:38 � 0:25. We observe this same systematic difference in
our N-body halos. Taking the profile shape n from the Prugniel-
Simien model fits to the density profile (equivalent to the value
of n obtained by fitting Sérsic’s R1=n model to the projected dis-
tribution), we find n ¼ 3:59 � 0:65 for our cluster-sized halos
and n ¼ 2:89 � 0:49 for our galaxy-sized halos. A Student t-test,

without assuming equal variance in the two distributions, re-
veals that the above means are different at the 88% level. Ap-
plying the same test to the data set of Merritt et al. (2005, their
Table 1, col. [2]), which is double the size of our sample and also
contains dwarf galaxy–sized halos, we find that the means are dif-
ferent at the 99.98% level. We conclude that there is a significant
mass dependence in the density profiles of simulated dark matter
halos. Density profiles of more massive halos exhibit more cur-
vature (smaller n) on a log-log plot.
The fact that n varies systematically with halo mass raises the

question of which density scale and radial scale to use when
characterizing halo structure. In the presence of a ‘‘universal’’
density profile, the ratio between Re and r�2 (the radius where the
logarithmic slope of the density profile equals �2; see Paper II )
is a constant factor, but with varying values of n this is not the
case. This remark also holds for the scale density, which is used
to measure the contrast with the background density of the uni-
verse and provides the so-called halo concentration. This in turn
raises the question of what ‘‘concentration’’ should actually be
used, and whether systematic biases exist if one uses ��2 rather
than, for instance, �e. To reiterate this point: the density ratio be-
tween r ¼ r�2 and r ¼ Re depends on the profile shape n, and
thus, apparently, on the halo mass.
In Figure 16 we show how the use of r�2 and Re produce

slightly different results in the size-density diagram (e.g., Fig. 8 of
Navarro et al. 2004). The relation between size (or equivalently
mass) and central concentration (or density) varies depending on
how one chooses to measure the sizes of the halos.
To better explore how the homology (i.e., universality) of CDM

halos is broken, it would be beneficial to analyze a large, low-
resolution sample of halos from a cosmological cube simulation
in order to obtain good statistics.Moreover, the collective impact
from differing degrees of virialization in the outer regions, pos-
sible debris wakes from larger structures, global ringing induced
by the last major merger, triaxiality, and the presence of large
subhalos could be quantified.

7. SUMMARY

We presented a nonparametric algorithm for extracting smooth
and continuous representations of spherical density profiles from

6 We remind that the uncertainty on the mean is not equal to the standard
deviation.

Fig. 15.—Mass vs. profile shape (1/n). For the galaxies and galaxy clusters,
the shape parameters n have come from the best-fitting Sérsic R1=n model to the
(projected) luminosity and X-ray profiles, respectively. The galaxy stellar masses
and cluster gas masses are shown here. For dark matter halos the virial masses
are shown, and the shape parameters come from the best-fitting Prugniel-Simien
model. (Note that the value of 1/n from the Prugniel-Simien model applied to
a density profile is equivalent to the value of n from Sérsic’s model applied to
the projected distribution.) We are plotting baryonic properties for the galaxies
alongside dark matter properties for the simulated halos. Filled stars, N-body
dark matter halos from this paper; open plus signs, galaxy clusters from Demarco
et al. (2003); dots, dwarf elliptical (dE) galaxies from Binggeli & Jerjen (1998);
triangles, dE galaxies from Stiavelli et al. (2001); open stars, dE galaxies from
Graham & Guzmán (2003); asterisks, intermediate to bright elliptical galaxies
from Caon et al. (1993) and D’Onofrio et al. (1994).

Fig. 16.—Density ��2, where the logarithmic slope of the density profile
equals �2, plotted against (1) the radius where this occurs (open symbols) and
(2) the effective radius ( filled symbols) derived from the best-fitting Prugniel-
Simien model (eq. [25]). Both ��2 and r�2 are also computed from the best-
fitting Prugniel-Simien model (see Paper II). If a universal profile existed for
these halos, the vertical difference would be constant for all halos.
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N-body data and applied it to a sample of simulated dark matter
halos. All halos exhibit a continuous variation of logarithmic
density slope with radius; in the case of the �CDM halos, the
variation of slope with radius is close to a power law. We then
compared the ability of a variety of parametric models to repro-
duce the nonparametric �(r) values. Over the fitted radial range
0:01P r /rvir < 1, both the Einasto r1

=n model (identical in func-
tional form to Sérsic’s model but expressed in terms of space,
rather than projected, radius and density) and the Prugniel-Simien
model (an analytical approximation to a deprojected Sérsic law)
provide a better description of the data than the (1, 3, �) model,
i.e., the NFW-like double-power-law model with inner slope �.
Moreover, unlike the (1, 3, �) model, both of these models have
finite total mass and are also capable of describing the density pro-
files of halos formed from the cold collapse of a spherical over-
density (Fig. 6).

The single function that provides the best overall fit to the halo
density profiles is Einasto’s law, equation (20):

�(r) ¼ �e exp �dn r=reð Þ1=n�1
h in o

;

with dn defined as in equation (24). This conclusion is consistent
with that of an earlier study (Merritt et al. 2005) that was based
on a different set of N-body halos. Typical values of the ‘‘shape’’
parameter n in equation (20) are 4P nP 7 (Table 1). Correspond-
ing n-values from Sérsic profile fits to the projected (surface) den-
sity range from �3 to �3.5 (Fig. 15).

We propose that Einasto’s model, equation (20), bemorewidely
used to characterize the density profiles of N-body halos. As noted
above, Einasto’s model has already found application in a num-
ber of observationally motivated studies of the distribution of mass
in galaxies and galaxy clusters. We propose also that the suitability
of Einasto’s model for describing the luminous density profiles of
galaxies should be evaluated, either by projecting equation (20)
onto the plane of the sky or by comparing equation (20) directly
with deprojected luminosity profiles. Such a study could strengthen

the already strong connection between the density profiles of gal-
axies and N-body dark matter halos (Merritt et al. 2005).

While equation (20) is a good description of all of the halo
models considered here, we found that systematic differences do
exist in the best-fit models that describeN-body halos formed via
hierarchical merging on the one hand, and those formed via spher-
ical collapse on the other hand, in the sense that the latter have
substantially smaller shape parameters, n � 3:3 (Table 1). That
is, the density profiles in the cold-collapse halos decline more
quickly than r�3 at large radii and have shallower inner pro-
file slopes than those produced in simulations of hierarchical
merging.

With regard to just the noncollapse models, we also found sys-
tematic differences between the cluster- and galaxy-sized halos.
The latter are slightly better fitted by the three-parameter Dehnen-
McLaughlin model, and the former are slightly better fitted by the
Prugniel-Simienmodel (Table 4). This, togetherwith the observa-
tion thatmoremassive halos tend to have smaller shape parameters
n (Fig. 15), suggests that there may not be a truly ‘‘universal’’
density profile that describes �CDM halos.
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Sérsic, J.-L. 1963, Bol. Asoc. Argentina Astron., 6, 41
———. 1968, Atlas de Galaxias Australes (Cordoba: Univ. Cordoba)
Silverman, B. W. 1986, Density Estimation for Statistics and Data Analysis
(London: Chapman & Hall )

Spergel, D. N., et al. 2003, ApJS, 148, 175
Stadel, J. 2001, Ph.D. thesis, Univ. Washington
Statler, T. S., & Diehl, S. 2005, BAAS, 207, 178.07
Stepanas, P. G., & Saha, P. 1995, MNRAS, 272, L13
Stiavelli, M., Miller, B. W., Ferguson, H. C., Mack, J., Whitmore, B. C., &
Lotz, J. M. 2001, AJ, 121, 1385

Tenjes, P., Haud, U., & Einasto, J. 1994, A&A, 286, 753
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